Abstract

This article investigated long term alkaline conditioning and temperature on the physical and mechanical properties of glass fiber‐reinforced polymer (GFRP) composite rebar for structural applications. The GFRP rebar was immersed in alkaline solution (pH ≈ 13) for 23 months at 23°C, and for 24 months at 60°C. The moisture absorption was found to be 0.34% at 23°C after 23 months, and 0.76% at 60°C after 24 months. At both temperatures, moisture absorption did not reach equilibrium which was attributed to two stages non‐Fickian behavior. Glass transition temperature (Tg) of the polymer matrix of rebar that conditioned at 23°C was found to be decreased because of plasticization, whereas Tg of the rebar that conditioned at 60°C was remained greater than the Tg of control rebar due to nonplasticization effect. Shear strength was retained by 83.5% at 23°C and 80.5% at 60°C, flexural strength was retained by 81% at 23°C and 69% at 60°C, and tensile strength was retained by 91.2% at 23°C and 74.3% at 60°C. It was revealed that durability of GFRP rebar in alkaline environment was controlled by the absorbed moisture; this was because the load transfer efficiency of fiber/matrix interface is vulnerable to moisture. POLYM. COMPOS., 37:3181–3190, 2016. © 2015 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.