Abstract

In this paper, the curiosity is coming from how to bring out the fluidic capability of nanofluids (fluid itself) for critical heat flux (CHF) enhancement away from surface deposition effects such as improved wettability. The pool boiling characteristics of dilute dispersions of alumina and the microencapsulated C19H40 phase change material (MPCM) in R-123 were studied. Whereas other nanofluid studies only reported that a significant enhancement of CHF was achieved by buildup of a porous layer of nanoparticles on the heater surface during nucleate boiling, it was found that the additional CHF enhancement of 24% occurred with the MPCM compared to alumina nanomaterials. With solid–liquid phase changes, PCMs in suspension delay the occurrence of CHF by absorbing heat around from the heater, nucleate bubbles and merged bubbles while PCM shells prevent leakage of molten cores and allows the return to solid with exchanges of heat at some distances. The present study found that PCMs could make fluidic effects of nanofluid not relying on the surface depositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.