Abstract

Muscarinic agonists and adenyl nucleotides are noncompetitive modulators of sites labeled by [35S]GTP gamma S in washed cardiac membranes from Syrian golden hamsters. Specific binding of the radioligand and its inhibition by either GTP gamma S or GDP reveals three states of affinity for guanyl nucleotides. In the absence of adenyl nucleotide, carbachol promotes an apparent interconversion of sites from higher to lower affinity for GDP; the effect recalls that of guanyl nucleotides on the binding of agonists to muscarinic receptors. In the presence of 0.1 mM ATP gamma S, the binding of [35S]GTP gamma S is increased at concentrations up to about 50 nM and decreased at higher concentrations. At a radioligand concentration of 160 pM, binding exhibits a bell-shaped dependence on the concentration of both ATP gamma S and AMP-PNP; with ADP and ATP, there is a second increase in bound [35S]GTP gamma S at the highest concentrations of adenyl nucleotide. ATP gamma S and AMP-PNP also modulate the effect of GDP, which itself emerges as a cooperative process: that is, binding of the radioligand in the presence of AMP-PNP exhibits a bell-shaped dependence on the concentration of GDP; moreover, the GDP-dependent increase in bound [35S]GTP gamma S is enhanced by carbachol. The interactions among GDP, GTP gamma S, and carbachol can be rationalized quantitatively in terms of a cooperative model involving two sites tentatively identified as G proteins. Both GTP gamma S and GDP exhibit negative homotropic cooperativity; carbachol enhances the homotropic cooperativity of GDP and induces or enhances positive heterotropic cooperativity between GDP and [35S]GTP gamma S. An analogous mechanism may underlie the guanyl nucleotide-dependent binding of agonists to muscarinic receptors. The data suggest that the binding properties of G proteins and their associated receptors reflect cooperative effects within heterooligomeric arrays; agonist-induced changes in cooperativity may facilitate the exchange of GTP for bound GDP and thereby constitute the mechanism of G protein activation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.