Abstract

Catalytic activities of calcium hydroxyapatite (HAp) and β-type tricalcium phosphate (β-TCP) were examined for use in the oxidative dehydrogenation (ODH) of isobutane. β-TCP was catalytically inactive for the ODH of isobutane, but stoichiometric HAp afforded a high isobutene yield (5.6%). The isobutane conversion and isobutene selectivity of HAp depended on the atomic ratio of Ca/P. HAp with Ca/P = 1.67 showed the highest isobutene selectivity and isobutene yield among the HAp catalysts with different Ca/P ratios. The characterization of the acidic-basic properties showed that these properties affect the catalytic performance of HAp, and that its basicity is necessary for high catalytic activity. To improve the catalytic activities of calcium phosphates, they were impregnated with Cr. Despite a much lower surface area for β-TCP, Cr-impregnated β-TCP showed a higher isobutene yield (up to 8.4%) than that of Cr-impregnated HAp. The results of the XPS measurement showed that the Cr3+ species on calcium phosphates, owing to basicity, worked as active sites in the ODH of isobutane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.