Abstract

The application of sighs during baseline ventilation was found to improve alveolar recruitment and oxygenation in patients with acute respiratory distress syndrome (ARDS). The present investigation evaluates if respiratory mechanics can be modified by a sigh. Ten consecutive patients with acute lung injury (ALI) admitted to the University Hospital Intensive Care Unit the were studied during mechanical ventilation. Three sighs were administered to sedated-paralyzed patients during the measurement period. Respiratory mechanics were studied in regular breaths immediately before and after a sigh provided that a steady-state had been reached and by the airway pressure-time curve profile to evaluate the lung recruitment. Viscoelastic constants (elastic, resistive, and time), as well as elastance and resistances, were determined by the single breath method. Arterial blood gases were also determined pre- and post-sigh. Elastic and resistive components of viscoelasticity decreased after a sigh (20 and 21%, respectively). As a result, the pressure required to overcome viscoelasticity and mechanical inhomogeneities also decreased in these patients (17%). The mechanical changes were associated with alterations in PaO(2). The sigh is useful to diminish viscoelastic impedance in ALI patients, thus allowing a smaller inflation pressure. Under the present experimental conditions it seems that viscoelastic mechanical alterations precede their elastic and resistive counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.