Abstract

AbstractPrior studies have shown that frictional changes owing to evolving geometry of an inlet in a multiple inlet‐bay system can affect tidally driven circulation. Here, a step between a relatively deep inlet and a shallow bay also is shown to affect tidal sea‐level fluctuations in a bay connected to multiple inlets. To examine the relative importance of friction and a step, a lumped element (parameter) model is used that includes tidal reflection from the step. The model is applied to the two‐inlet system of Katama Inlet (which connects Katama Bay on Martha's Vineyard, MA to the Atlantic Ocean) and Edgartown Channel (which connects the bay to Vineyard Sound). Consistent with observations and previous numerical simulations, the lumped element model suggests that the presence of a shallow flood shoal limits the influence of an inlet. In addition, the model suggests an increasing importance of friction relative to the importance of the step as an inlet shallows, narrows, and lengthens, as observed at Katama Inlet from 2011 to 2014.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.