Abstract

1. Previous studies suggested that nitric oxide (NO) may cause hyperpolarization and relaxation of canine colonic smooth muscle by both cGMP-dependent and cGMP-independent mechanisms. This hypothesis was tested using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), a novel inhibitor of NO-stimulated guanylate cyclase. 2. In the presence of histamine (30 microM), atropine and indomethacin (both at 1 microM), electrical field stimulation of intrinsic neurons (EFS; 5 Hz) produced inhibition of phasic contractile activity that is due to NO synthesis. ODQ caused a concentration-dependent block of this response (10 nM to 10 microM). 3. Inhibitory junction potentials (IJPs) due to NO synthesis were recorded from muscle cells located near the myenteric border of the circular muscle layer, using intracellular microelectrodes. IJPs were abolished by ODQ (1-10 microM). 4. EFS (10-20 Hz) produced frequency-dependent inhibition of electrical slow waves recorded from cells located near the submucosal surface of the circular muscle layer. This inhibition is due to NO synthesis, and it was abolished by ODQ (1-10 microM). 5. Hyperpolarization and relaxation produced by an NO donor, sodium nitroprusside, were abolished by ODQ pretreatment (1-10 microM). In contrast, inhibitory responses to 8-Br-cGMP (1 mM) were unaffected by ODQ. 6. ODQ alone (1-10 microM) had no significant effect on spontaneous electrical or phasic contractile activity. In tissues pre-treated with L-NAME (300 microM), ODQ decreased the amplitude of spontaneous or histamine-stimulated phasic contractile activity. 7. These results suggest that electrical and mechanical effects of endogenously released and exogenously applied NO in canine colon are largely due to cGMP synthesis by ODQ-sensitive soluble guanylate cyclase. No evidence to support a direct (cGMP-independent) mechanism of NO action was found. ODQ also appears to cause a non-specific inhibition of muscle contractile activity; however, this effect does not contribute to block of NO-dependent effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.