Abstract
Salinity is a widespread adverse environmental problem globally, and significantly limits crop production. In this study, the possibility of enhancing salinity stress tolerance of Swiss chard (Beta vulgaris L. var. cicla) by 5-aminolevulinic acid (ALA) foliar application was investigated. The Swiss chard plants were grown in hydroponic culture. Twelve-week-old uniform seedlings were treated by 0 and 40 mM saline regimes generated by the mixture of sodium chloride and sodium sulfate (molar ratio NaCl:Na2SO4 = 9:1), and were foliar-sprayed with 0 and 60 μM L−1 ALA (every 3 days) for 6 days; then the plants were treated for another 7 days (every 3 day) with increased concentration of salinity and ALA, 80 mM and 120 μM L−1. Salinity without ALA application significantly decreased plant growth [43 % in shoot dry weight (DW), 21 % in root DW, 24 % in relative growth rate (RGR), 43 % in leaf area (LA)], water uptake [20.8 % in relative water content (RWC), 47.9 % in osmotic potential (OP)], chlorophyll (Chl) a content (10 %), Pn (36 %), Gs (72 %) and Tr (59 %) compared with those in control plants; however, under saline conditions, ALA foliar application improved plant growth (49.7 % in shoot DW, 27 % in root DW, 42.3 % in RGR, 72.1 % in LA) and increased RWC (12 %), Chl a content (10 %) and photosynthetic parameters (27 % in Pn, 28 % in Gs, 14 % in Tr) compared with those in untreated plants. Salinity significantly increased Na+ content, resulting in the reduction of Mg2+ and K+ contents. ALA foliar application alleviated ionic toxicity through the reduction of Na+ content and Na+/K+ ratio. On the other hand, it increased total nitrogen and glycine betaine (GB) content. ALA foliar application slightly reduced malondialdehyde (MDA) content, indicating that ALA has the potential to alleviate oxidative stress in salinity-stressed Swiss chard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.