Abstract

Aims: Cytochrome P450 (CYP450) 2D6 is an important member of the P450 enzyme superfamily and responsible for clearing 25% of clinically important drugs. The aim of this study was to assess the catalytic characteristics of 24 CYP2D6 allelic isoforms found in the Chinese population and their effects on the metabolism of risperidone in vitro. Methods: Insect microsomes expressing wild-type CYP2D6 and 24 CYP2D6 allelic variants were incubated with 20-1,000 μmol/l risperidone for 40 min at 37°C. After termination, risperidone and 9-OH risperidone, the metabolite of risperidone, were precipitated and used for signal collection by ultra-performance liquid-chromatography tandem mass spectrometry. Results: Among 24 CYP2D6 variants tested, 2 variants (CYP2D6*92 and CYP2D6*96) were found to be with no detectable activity. Two variants (E215K and R440C) exhibited higher intrinsic clearance values than the wild-type protein, while the remaining 20 CYP2D6 allelic variants exhibited significantly decreased clearance values (2.01-87.56%) compared to CYP2D6*1. Conclusion: These findings suggest that more attention should be directed to subjects carrying these infrequent CYP2D6 alleles when administering risperidone in the clinic. This is the first report of all these novel alleles for risperidone metabolism, providing fundamental data for further clinical studies on CYP2D6 alleles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.