Abstract

This study examined (1) the effects of a single bout of exercise at different pedaling rates on physiological responses, pedal force, and muscle oxygenation, and (2) the effects of 2 weeks of training with different pedaling rates on work rate at lactate threshold (WorkLT). Sixteen healthy men participated in the study. An incremental exercise test involving pedaling a cycling ergometer at 50 rpm was conducted to assess maximal oxygen consumption and WorkLT. The participants performed constant workload, submaximal exercise tests at WorkLT intensity with three different pedaling rates (35, 50, and 75 rpm). Oxygen consumption ([Formula: see text]O2), blood pressure, heart rate (HR), blood lactate, and pedal force were measured and oxy-hemoglobin/myoglobin concentration (OxyHb/Mb) at vastus lateralis was monitored by near-infrared spectroscopy during exercise. The participants were then randomly assigned to cycling exercise training at WorkLT in either the low or high frequency pedaling rate (LFTr, 35 rpm or HFTr, 75 rpm) group. Each 60-min training session was performed five times/week. Despite maintaining the same work rate, [Formula: see text]O2 and HR were significantly lower at 35 than 75 rpm. Conversely, integrated pedal force was significantly higher at 35 than 75 rpm. Peripheral OxyHb/Mb was significantly lower at 35 than 75 rpm. After 2 weeks of training, WorkLT normalized to body mass significantly increased in the LFTr, but not the HFTr group. Pedaling rate and the corresponding pedal force and peripheral oxygenation during cycling exercise influence the effect of training at LT on WorkLT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.