Abstract

Exposure to 17α-ethinylestradiol (EE2), a synthetic estrogen, has previously been shown to decrease reproductive endocrine status and egg production in northern mummichog (Fundulus heteroclitus macrolepidotus). The objective of this study was to evaluate if variations in salinity or temperature conditions of EE2-exposed mummichog modify the effect on whole organism reproductive endocrine status and gonadal steroidogenesis. Mummichog were exposed in vivo for 14 days to 0, 50 and 250ng/L EE2 in 0, 16 and 32ppt salinity at 18°C and to 0 and 250ng/L EE2 at 10, 18 and 26°C at 16ppt. There was a little overall effect of salinity on measured endpoints. In the salinity exposure, 250ng/L EE2-exposed females had significantly reduced 17β-estradiol (E2) levels. Increased temperature triggered gonadal growth in both sexes and increased plasma E2 and E2 production and decreased 11-KT (11-ketotestosterone) production. EE2 counteracted the effect of temperature by depressing gonadal growth in males. In both exposures, EE2 effects on testosterone (T) production were variable. The use of steroidogenic precursors (25-OH-cholesterol, and/or pregnenolone and/or testosterone) in the in vitro gonadal incubations indicated decreased E2 production in females and 11-KT production in males were predominately due to suppression of the terminal conversion step between T and E2 or 11-KT. Ovarian aromatase A (cyp19a) gene expression at 16ppt and 18°C was not affected by 250ng/L EE2 (the only treatment combinations tested). Overall, temperature is a factor regulating northern mummichog reproduction; EE2 overrides its effects and disrupts the terminal step of steroidogenesis. Our results should be considered in designing future estuarine fish bioassays and in understanding effects of estrogenic endocrine disruptors in estuaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.