Abstract

Using a modified heuristic nonlinear creep model with different wheel conicities and nominal rolling radii, a 31 degrees-of-freedom railway vehicle system with rail irregularities in the lateral and vertical directions is modelled and analysed. The effect of suspension system parameters, different wheel conicities and nominal rolling radius on the derailment quotient, the offload factor and the ride comfort index are illustrated and compared. Generally, the derailment risk is underestimated and ride comfort is overestimated when the linear creep model is used for dynamic analysis of a railway vehicle system. The derailment risk is increased and the ride comfort performance is decreased when a worn wheel that has a different wheel nominal rolling radius is used. Finally, for a softer primary and secondary suspension system, the derailment risk for a worn wheel is also increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.