Abstract

Following a comparison of nutrient total-tract digestibility estimates in lactating buffaloes using single-point undigestible NDF (uNDF) or acid-insoluble ash (AIA) as internal markers, the potential of fecal near-infrared spectroscopy (NIRS) to provide calibration equations for the assessment of the chemical composition of feces and nutrient total-tract digestibility estimated with internal markers was explored. Chemical analyses were performed on 147 fecal samples from lactating buffaloes reared on 5 farms in central Italy (Naples). Each farm fed a silage-based TMR to the buffaloes, and the TMR was sampled in the 2 d before the fecal collection. The TMR and individual fecal samples were collected and analyzed for DM, OM, ash, AIA, ether extract (EE), starch, fiber fractions (amylase-treated NDF without residual ash [aNDFom], amylase-treated NDF inclusive of residual ash [aNDF], ADF without residual ash [ADFom], ADF, hemicellulose, cellulose, ADL, uNDF), N, CP and CP bound to aNDF (NDICP) and to ADF (ADICP). The uNDF content was determined through a 240-h in vitro fermentation and employed, together with AIA as markers, to estimate the total-tract apparent digestibility and total-tract digestibility of DM, OM, ash, N, CP, EE, aNDFom, aNDF, NDIP, ADFom, and ADF, ADIN, ADL, hemicellulose, cellulose, starch, NFC, and the B3 fraction of N (NB3). No correlation was found between DM and OM digestibility estimated with AIA and uNDF as internal markers. Weak correlations were detected for all the other nutients digestibilities, and strong correlations were observed for EE, ADFom, hemicellulose, NDIN, ADIN, NB3, NFC, and starch. The sample set (n = 147) was divided in a calibration set (n = 111) and a validation set (n = 36) to "train" and "validate" the fecal NIRS curve through an external validation process. An estimation usable for preliminary or initial evaluation was obtained for N, CP, and aNDF fecal content. An excellent prediction was obtained for total tract digestibility of ADIN (R2 = 0.90) when estimated with uNDF as the internal marker. The NIRS technology was not able to accurately predict all the other traits and the estimated nutrient digestibility of lactating buffalo diets from fecal spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.