Abstract

Many oncoproteins are considered undruggable because they lack enzymatic activities. In this study, we present a small-molecule-based anticancer agent that acts by inhibiting dimerization of the oncoprotein survivin, thereby promoting its degradation along with spontaneous apoptosis in cancer cells. Through a combination of computational analysis of the dimerization interface and in silico screening, we identified one compound that induced proteasome-dependent survivin degradation. Analysis of a set of structural analogues led us to identify a lead compound (LQZ-7F), which was effective in blocking the survival of multiple cancer cell lines in a low micromolar concentration range. LQZ-7F induced proteasome-dependent survivin degradation, mitotic arrest, and apoptosis, and it blocked the growth of human tumors in mouse xenograft assays. In addition to providing preclinical proof of concept for a survivin-targeting anticancer agent, our work offers novel in silico screening strategies to therapeutically target homodimeric oncogenic proteins considered undruggable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.