Abstract

AbstractCoverage is an importance issue in wireless sensor networks. In this work, we first propose a novel notion of information coverage, which refers to the coverage efficiency of field information covered by deployed sensor nodes. On the basis of information coverage, we consider an optimization problem of how to partition the given field into multiple parcels and to deploy sensor nodes in some selected parcels such that the field information covered by the deployed sensor nodes meets the requirement. First, we develop two effective polynomial‐time algorithms to determine the deployed locations of source nodes for information 1‐coverage and q‐coverage of the field, respectively, without consideration of communication, where information q‐coverage implies that the field information in terms of information point is covered by at least q source nodes. Also, we prove the upper bound in the theoretical for the approximate solution derived by our proposed method. Second, another polynomial‐time algorithm is presented for deriving the deployed locations of relay nodes. In the theoretical, this proposed algorithm can achieve the minimized number of relay nodes. Further, the related information 1‐coverage algorithms are applied in our wireless sensor network‐based automatic irrigation project in precision agriculture. Experimental results show the major trade‐offs of impact factors in sensor deployment and significant performance improvements achieved by our proposed method. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.