Abstract
During device testing, one of the aspects to be considered is the minimization of the switching activity of the circuit under test in order to steer clear of introducing problems due to device overheating. Nevertheless, there are also certain scenarios during which the maximization of switching activity of the circuit under test (CUT) or of certain parts of it could be proven beneficial e.g., during Burn-In (BI), where internal stress is often produced by applying suitable stimuli. This can be done in a functional manner based on Software-based Self-Test in order to avoid possible damages to the CUT and/or any kind of yield loss. However, the generation of suitable test programs for this task represents a non-trivial task. In this paper we consider a scenario where the circuitry to be stressed is a pipelined processor. We present a methodology, based on formal techniques, able to automatically generate the best functional stress stimuli, i.e., a short and repeatable sequence of assembly instructions, which is guaranteed to induce the maximum switching activity within a given target processor module over a pre-defined time period. For the purposes of our experiments we used the OpenRISC 1200. The gathered experimental results demonstrate the effectiveness of the developed method. In particular, we show that the time for generating the best instruction sequence is limited in most cases, while the generated sequence can always achieve a significantly higher sustained toggling activity than any other solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.