Abstract

Two deformation models are proposed for clamped circular plates undergoing pulse loadings. By these models, behaviors of plate are studied effectively for the situations before and after local failure. In the first model, it is assumed that impulsive load is uniformly distributed and final deformation is of a spherical dome shape. In order to analyze this model, it assumed that under the shock wave, the mechanism of deformation is represented by a multi-peripheral stationary hinge scheme. In the second model, the final shape is considered to have a conical shape represented by a single peripheral plastic moving hinge. In this part, an alternate deformation model is proposed and the final shape is induced by transverse and radial motion of the plastic hinge. For each model, the deformation and motion after severance of the plate (post local failure) will be analyzed. Calculated plastic energies dissipated in deformation process, energy absorbed in boundaries during failure, residual kinetic energy and velocity after local failure are evaluated and discussed. Computed results show good agreement between our approaches and experimental data; better than that obtained with other models. Key words: Impulsive load, shear local failure, plastic hinge, rigid perfectly plastic, residual kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.