Abstract

We propose a scheme for preparation of the N-dimension spin Greenberger–Horne–Zeilinger state by exploiting quantum dots (QDs) embedded in microcavities. Numerically analysed results show that with the spin-selective photon reflection from the cavity, we can complete the scheme assisted by one polarized photon with high fidelity and 100% successful probability in principle. Furthermore, the set-up is just composed of simple linear optical elements, delay lines and conventional photon detectors, which are feasible with existing experimental technology. Moreover, QDs have numerous admirable features in weak-coupling regime, which are practicable in realistic cavity quantum electrodynamics system shown by previous numerical simulations and experiments. Therefore, our scheme might be realized in near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.