Abstract

In Yee's finite-difference time-domain (FDTD) scheme, effective permittivities are often used to account for offsets of dielectric interfaces from grid nodes. The specific values of these effective permittivities must be chosen in such a way that the second-order accuracy of the scheme is preserved. It is shown in this work that, contrary to more elaborate techniques proposed recently for the development of these effective permittivities, a rigorous application of the integral forms of Maxwell's curl equations on the Yee's lattice leads to the desired values in a straightforward fashion. Numerical experiments in a two-dimensional (2-D) cavity are used to verify that the calculated effective permittivities preserve the second-order accuracy of the FDTD scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.