Abstract

Conditioning chemotherapy is used to deplete hematopoietic stem cells in the recipient’s marrow, facilitating donor cell engraftment. Although effective, a major issue with chemotherapy is the systemic genotoxicity that increases the risk for secondary malignancies. Antibody conjugates targeting hematopoietic cells are an emerging non-genotoxic method of opening the marrow niche and promoting engraftment of transplanted cells while maintaining intact marrow cellularity. Specifically, this platform would be useful in diseases associated with DNA damage or cancer predisposition, such as dyskeratosis congenita, Schwachman-Diamond syndrome, and Fanconi anemia (FA). Our approach utilizes antibody-drug conjugates (ADC) as an alternative conditioning regimen in an FA mouse model of autologous transplantation. Antibodies targeting either CD45 or CD117 were conjugated to saporin (SAP), a ribosomal toxin. FANCA knockout mice were conditioned with either CD45-SAP or CD117-SAP prior to receiving whole marrow from a heterozygous healthy donor. Bone marrow and peripheral blood analysis revealed equivalent levels of donor engraftment, with minimal toxicity in ADC-treated groups as compared with cyclophosphamide-treated controls. Our findings suggest ADCs may be an effective conditioning strategy in stem cell transplantation not only for diseases where traditional chemotherapy is not tolerated, but also more broadly for the field of blood and marrow transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.