Abstract

Random sequential adsorption algorithm is a popular tool for modelling structure of monolayers built in irreversible adsorption experiments. However, this algorithm becomes very inefficient when the density of molecules in a layer rises. This problem has already been solved for a very limited range of basic shapes. This study presents a solution that can be used for any molecule occupying the surface that can be modelled by any number of different disks. Additionally, the presented algorithm stops when there is no possibility to add another shape to the monolayer. This allows to study properties of fully saturated, two-dimensional random packings built of complex shapes. For instance, the presented algorithm has been used to determine the mean saturated packing fractions of monolayers built of dimers and fibrinogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.