Abstract

We propose an effective model called the "charge model", for the half-filled one-dimensional Hubbard and extended Hubbard models. In this model, spin-charge separation, which has been justified from an infinite on-site repulsion ($U$) in the strict sense, is compatible with charge fluctuations. Our analyses based on the many-body Wannier functions succeeded in determining the optical conductivity spectra in large systems. The obtained spectra reproduce the spectra for the original models well even in the intermediate $U$ region of $U=5-10T$, with $T$ being the nearest-neighbor electron hopping energy. These results indicate that the spin-charge separation works fairly well in this intermediate $U$ region against the usual expectation and that the charge model is an effective model that applies to actual quasi-one-dimensional materials classified as strongly correlated electron systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.