Abstract

We study here, in two spatial dimensions, the effective Lagrangian of nonrelativistic charged fermions in an electromagnetic field. The fermionic integration is performed yielding a one-loop effective action that is evaluated using the inhomogeneity (derivative) expansion technique. The effective Lagrangian involves a Chern-Simons (CS) -like term with a coefficient that is a ``staircase'' function of B, the magnetic field. We then discuss the application of this effective Lagrangian to a system of anyons, showing that the cancellation of the induced CS term against a CS term included in the beginning to change the fermions to anyons, is favored energetically, together with the expulsion of B from the system of anyons. The cancellation implies the existence of a massless mode. This, together with the fact that B=0, implies superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.