Abstract

Protein microarrays are emerging as an important enabling technology for the simultaneous investigation of complicated interactions among thousands of proteins. The solution-based blocking protocols commonly used in protein microarray assays often cause cross-contamination among probes and diminution of protein binding efficiency because of the spreading of blocking solution and the obstruction formed by the blocking molecules. In this paper, an alternative blocking process for protein microarray assays is proposed to obtain better performance by employing a vapor-phase deposition method to form self-assembled surface coatings using a highly fluorinated organosilane as the blocking agent on the background surfaces. Compared to conventional solution-based blocking processes, our experimental results showed that this vapor-phase process could shorten the blocking time from hours to less than 10 min, enhance the binding efficiency by up to 6 times, reduce the background noise by up to 16 times, and improve the S/N ratio by up to 64 times. This facile blocking process is compatible with current microarray assays using silica-based substrates and can be performed on many types of silane-modified surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.