Abstract

We study the Hubbard-Holstein model using slave-boson mean-field and a variational Lang-Firsov transformation. We identify weak and strong $e$-ph coupling solutions, whose stability depends both on the bare $e$-ph coupling and on the correlation strength. At mean field level the evolution from weak to strong electron-phonon coupling occurs via a first-order polaronic transition if the adiabatic parameter is below a critical value. In the strongly correlated regime and in the adiabatic limit, the region in which the weak-coupling solution is stable is sizeably enlarged with respect to the weakly correlated system and the Mott metal-insulator transition is found to be robust with respect to $e$-ph interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.