Abstract

Inspired by gradient structures in the nature, Gradient Nanostructured (GNS) metals have emerged as a new class of materials with tunable microstructures. GNS metals can exhibit unique combinations of material properties in terms of ultrahigh strength, good tensile ductility and enhanced strain hardening, superior fatigue and wear resistance. However, it is still challenging to fully understand the fundamental gradient structure-property relationship, which hinders the rational design of GNS metals with optimized target properties. In this paper, we developed an adaptive design framework based on surrogate modeling to investigate how the grain size gradient and twin thickness gradient affect the strength of GNS metals. The Gaussian Process (GP) based surrogate modeling technique with adaptive sequential sampling is employed to develop the surrogate models for the gradient structure-property relationship. The proposed adaptive design integrates physics-based simulation, surrogate modeling, uncertainty quantification and optimization, which can efficiently explore the design space and identify the optimized design of GNS metals with maximum strength using limited sampling data generated from high fidelity but computational expensive physics-based simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.