Abstract

Abstract. Modeling air transport through the entire firn column of polar ice sheets is needed to interpret climate archives. To this end, different regressions have been proposed in the past to estimate the effective coefficient of diffusion and permeability of firn. These regressions are often valid for specific depth or porosity ranges only. Also, they constitute a source of uncertainty as evaluations have been limited by the lack of reliable data of firn transport properties. To contribute with a new dataset, this study presents the effective coefficient of diffusion and the permeability at Dome C and Lock In, Antarctica, from the near-surface to the close-off (23 to 133 m depth). Also, microstructure is characterized based on density, specific surface area, closed porosity ratio, connectivity index, and structural anisotropy through the correlation lengths. All properties were estimated based on pore-scale computations from 3D tomographic images of firn samples. The normalized diffusion coefficient ranges from 1.9 × 10−1 to 8.3 × 10−5, and permeability ranges from 1.2 × 10−9 to 1.1 × 10−12 m2, for densities between 565 and 888 kg m−3. No or little anisotropy is reported. Next, we investigate the relationship of the transport properties with density over the firn density range (550–850 kg m−3), as well as over the entire density range encountered in the ice sheets (100–850 kg m−3), by extending the datasets with transport properties of alpine and artificial snow from previous studies. Classical analytical models and regressions from literature are evaluated against the estimates from pore-scale simulations. For firn, good agreements are found for permeability and the diffusion coefficient with two existing regressions of the literature based on open porosity despite the rather different site conditions (Greenland). Over the entire 100–850 kg m−3 density range, permeability is accurately reproduced by the Carman–Kozeny and self-consistent (spherical bi-composite) models when expressed in terms of a rescaled porosity, ϕres=(ϕ-ϕoff)/(1-ϕoff), to account for pore closure, where ϕoff is the close-off porosity. For the normalized diffusion coefficient, none of the evaluated formulas were satisfactory, so we propose a new regression based on the rescaled porosity that reads D/Dair=(ϕres)1.61.

Highlights

  • Atmospheric air circulates through the interconnected pores of snow and firn down to the firn–ice transition where pores close

  • Whereas the evolution rate is similar at both sites, Lock In shows systematically lower values of density and higher values of SSA compared to Dome C at a given depth

  • Air pores start to close from a depth of around 80 m, where the closed porosity ratio (CP) and the connectivity index (CI) start deviating from the values of 0 % and 100 %, respectively

Read more

Summary

Introduction

Atmospheric air circulates through the interconnected pores of snow and firn down to the firn–ice transition where pores close. Air entrapped in the closed pores of ice preserves past atmospheric air, thousands to millions of years old, providing invaluable data on past Earth environments (e.g., Petit et al, 1999; Lüthi et al, 2008; Loulergue et al, 2008; Yan et al, 2019). As gas transport from the surface is slow, air in the open pores of firn can be as old as several decades up to hundreds of years (Schwander et al, 1988; Battle et al, 1996; Kaspers et al, 2004). Among other challenges, interpreting firn and ice data with respect to past Earth conditions. Two of the important properties for gas transport in snow and firn are the effective coefficient of diffusion and the intrinsic permeability

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.