Abstract

We study the one loop effective action for a class of higher spin fields by using a first-quantized description. The latter is obtained by considering spinning particles, characterized by an extended local supersymmetry on the worldline, that can propagate consistently on conformally flat spaces. The gauge fixing procedure for calculating the worldline path integral on a loop is delicate, as the gauge algebra contains nontrivial structure functions. Restricting the analysis on (A)dS backgrounds simplifies the gauge fixing procedure, and allows us to produce a useful representation of the one loop effective action. In particular, we extract the first few heat kernel coefficients for arbitrary even spacetime dimension D and for spin S identified by a curvature tensor with the symmetries of a rectangular Young tableau of D/2 rows and [S] columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.