Abstract

AbstractThe sudden changes in the rates of transpiration and water uptake which occurred when the osmotic potential of the nutrient solution surrounding the roots of young wheat plants was rapidly changed were studied. The transpiration was measured by the aid of the microwave hygrometer and the water uptake by a recording poto‐meter specially built for this investigation.When the osmotic potential of the nutrient solution was rapidly increased by adding mannitol, there was a temporary transpiration increase. The maximum increase was greater but the total time of the temporary increase shorter when a higher mannitol concentration was used. The quantity of water transpired by the shoots due to the temporary transpiration increase seemed to be fairly constant irrespectively of the mannitol concentration. The water transport to the shoots was immediately reduced when the osmotic potential was rapidly increased. The immediate reduction was greater when a higher mannitol concentration was used. After the immediate reduction the rate of water transport increased without delay.When the osmotic potential of the nutrient solution was rapidly decreased by withdrawing mannitol there was a temporary transpiration decrease, and the water transport to the shoots was immediately increased. After this increase the rate of water transport started to decrease at once. When, however, the mannitol concentration had been 0.30 M or higher, the transpiration rate increased progressively, and the change of the rate of water transport was small.The results indicate that the primary effect of the rapidly changed osmotic potential is localized to the root surface. The rapidly reduced water transport to the shoots after adding mannitol brings about the temporary transpiration increase. The course of events after withdrawing mannitol is just the reverse to that when adding mannitol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.