Abstract

ABSTRACT We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.