Abstract

We report the studies on the effect of Zeeman slower beam power on the loading rate and collision loss rate in an atomic beam loaded krypton magneto-optical trap (MOT). The results show that an increase in Zeeman slower beam power initially increases the MOT loading rate and reduces the background collision loss rate to increase the number of cold atoms in the MOT to an optimum value. With further increase in the Zeeman slower beam power, the number of cold atoms in the MOT decreases due to increased background collision loss rate and decrease in the trap loading rate. However, the cold collision loss rate is observed to remain unaffected by the variation in the Zeeman slower beam power. Therefore, the study emphasizes the need to optimize the Zeeman slower beam power to trap maximum number of cold atoms in an atomic beam loaded MOT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.