Abstract
Duplex Stainless Steel (DSS) and Super Duplex Stainless Steel (SDSS) pipes were welded by Gas Tungsten Arc Welding (GTAW) process. The effect of welding parameters such as heat input, cooling rate, shielding/purging gas composition and interpass temperature on tensile strength, hardness and impact toughness were studied. The microstructure analysis revealed presence of intermetallic phases at root region of the weldments. All mechanical properties were improved at lower heat input and high cooling rate due to grain refinement and balanced microstructure [ferrite and austenite]. All weldments exhibited higher strength than base materials. Weld root region was harder than centre and cap region. SDSS is more susceptible to sigma phase formation due to higher alloying elements and weld thermal cycles, which lead to considerable loss of toughness. Higher nitrogen contents in shielding and purging gas resulted strengthening of austenite phase and restriction of dislocations, which ultimately improved mechanical properties. Higher interpass temperature caused reduction in strength and toughness because of grain coarsening and secondary phase precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.