Abstract

Simple SummaryParasitoid wasps control insect pests in agricultural crops, but often require additional resources from non-crop plants. Vineyard growers sometimes address this need by planting or sowing pre-selected herbs around the plots or between the vine rows. Here, we explored the simpler strategy of conserving spontaneously growing weeds within Mediterranean vineyards, and trimming them mechanically when they reach large size and interfere with farming activities. We compared this strategy with matched plots, in which resident weeds were sprayed regularly with herbicides, representing the conventional treatment. As predicted, overall parasitoid abundance and the number of parasitoid species were higher in the weed conservation plots. However, the direction and magnitude of the effect differed between the dominant parasitoid species, and populations of some potential pests increased in the weed conservation treatment. Conservation of weeds that grow spontaneously in vineyards is a low-cost practice that offers multiple benefits, such as reduced soil erosion, stabilization of soil temperatures, and diminished exposure of farmers to agrochemicals. Our results show that communities of important biological control agents may gain from this practice as well. Nevertheless, weed conservation within vineyards can only be sustainable if its benefits outweigh the risks of attracting crop pests.Enriching agroecosystems with non-crop vegetation is a popular strategy for conservation biocontrol. In vineyards, the effects of specific seeded or planted cover crops on natural enemies are well-studied, whereas conserving spontaneously developing weeds received less attention. We compared parasitoid communities between matched pairs of vineyard plots in northern Israel, differing in weed management practices: “herbicide”, repeated herbicide applications vs. “ground cover”, maintaining resident weeds and trimming them when needed. Using suction sampling, we assessed the parasitoids’ abundance, richness, and composition during three grape-growing seasons. Ground cover plots had greater parasitoid abundances and cumulative species richness than herbicide-treated plots, possibly because of their higher vegetation cover and richness. Dominant parasitoid species varied in their magnitude and direction of response to weed management. Their responses seem to combine tracking of host distributions with attraction to additional vegetation-provided resources. Parasitoid community composition was mildly yet significantly influenced by weed management, while season, year, and habitat (weeds vs. vine) had stronger effects. Vineyard weeds thus support local biocontrol agents and provide additional previously demonstrated benefits (e.g., soil conservation, lower agrochemical exposure) but might also attract some crop pests. When the benefits outweigh this risk, weed conservation seems a promising step towards more sustainable agricultural management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.