Abstract
This study aims to address the multi-beam transmission problem of optical wireless coherent communication systems under the influence of non-Kolmogorov turbulence. This paper establishes the mathematical model for mixing efficiency and BER of non-Kolmogorov turbulence wavefront distortion and multi-beam transmission coherent detection systems. The influence of factors such as spectral power-law index, zenith angle, and transmission distance on the communication performance of the system is analyzed, and an experimental system is built using adaptive optics equipment to test the proposed theory. Numerical analyses show that in a non-Kolmogorov turbulence environment, as the spectral power-law index, zenith angle, transmission distance, Fresnel zone, and pointing error attenuation increase, the mixing efficiency of the coherent detection system decreases and the BER increases; under the same conditions, the mixing efficiency and BER of the system are improved after increasing the number of transmission beams at the transmitting end. Experimental research shows that, for the coherent detection system after wavefront correction using adaptive optics, the wavefront PV and RMS variances are 1.68 μm2 and 0.05 μm2 when a single beam of light is transmitted at the transmitting end, and the wavefront PV and RMS variances are 0.23 μm2 and 0.01 μm2 when two beams are transmitted. It is verified that using multi-beam transmission wavefront superposition to suppress wavefront distortion and wavefront jitter can effectively improve the mixing efficiency and BER of the coherent detection system at the receiving end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.