Abstract

Laser ablation under a flowing water layer can reduce thermal damage in work material and also provide a better machining performance than processing in ambient air. However, there is still a lack of insight into a more complicated process like laser milling operation in water. Besides the laser parameters, the roles of water flow direction on the cut geometries need to be elucidated to realize the viability and reliability of the laser milling process in water. This study is for the first time to reveal the effects of water flow direction on the cavity dimensions and cut surface roughness in the laser milling process performed under a flowing water layer. Titanium alloy was used as a work sample in this study. The experimental results indicated that the laser beam should travel in the same direction of water flow to provide a uniform cavity depth and smooth milled surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.