Abstract

The permeability and Forchheimer coefficients of a porous medium, volcanic rock, are determined using micro-tomography images. A cubic volume in the middle of the images is extracted as REV (representative volume). The voids in the REV are discretised into anisotropic voxels using the commercial program of GeoDict. Seven computational domains with different voxel size in flow direction are generated. The velocity and pressure fields in the voids are obtained for Reynolds numbers ranging from 0.01 to 10. The obtained fields are used to determine the permeability and the Forchheimer coefficients. The performed calculations show that the nominal pore size changes with the voxel size in flow direction, however permeability and the Forchheimer coefficient approaches to the constant values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.