Abstract

Studies aimed at understanding Escherichia coli O157:H7 soil survival dynamics are paramount due to their inevitable introduction into the organic vegetable production systems via animal manure-based fertilizer. Therefore, a greenhouse study was conducted to determine the survival of E. coli O157:H7 in highly controlled soil matrices subjected to two variable environmental stressors: (1) soil volumetric water content (25 or 45 % VWC), and (2) the growth of clover (planted or unplanted). During the 7-week study, molecular-based qPCR analyses revealed that E. coli O157:H7 survival was significantly lower in soils maintained at either near water-holding capacity (45 % VWC) or under clover growth. The significant reduction under clover growth was only observed when E. coli populations were determined relative to all bacteria, indicating the need to further study the competition between E. coli O157:H7 and the total bacterial community in organic soils. Given the significant effect of clover on E. coli O157:H7 survival under different moisture conditions in this greenhouse-based study, this work highlights the antimicrobial potential of clover exudates in arable soils, and future work should concentrate on their specific mechanisms of inhibition; ultimately leading to the development of crop rotations/production systems to improve pre-harvest food safety and security in minimally processed, ready-to-eat and organic production systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.