Abstract

In a model of a single synapse with a circular contact zone and a single concentric zone containing receptor-gated channels, we studied the dependence of the synaptic current on the synaptic cleft width and on the relative size of the receptor zone. During synaptic excitation, the extracellular current entered the cleft and flowed into the postsynaptic cell through receptor channels distributed homogeneously over the receptor zone. The membrane potential and channel currents were smaller toward the cleft center if compared to the cleft edges. This radial gradient was due to the voltage drop produced by the synaptic current on the cleft resistance. The total synaptic current conducted by the same number of open channels was sensitive to changes in the receptor zone radius and the cleft width. We conclude that synaptic geometry may affect synaptic currents by defining the volume resistor of the cleft. The in-series connection of the resistances of the intracleft medium and the receptor channels plays the role of the synaptic voltage divider. This voltage dividing effect should be taken into account when the conductance of single channels or synaptic contacts is estimated from experimental measurements of voltage-current relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.