Abstract

The effect of viscous dissipation and thermal radiation on natural convection in a porous medium embedded within a vertical annular cylinder is investigated. The inner surface of the cylinder is maintained at an isothermal temperature T w and the outer surface is maintained at ambient temperature T ∞ . The fluid is assumed to obey the Darcy law. Finite element method is used to solve the partial differential equations governing the fluid flow and heat transfer behavior. The study is focused to investigate the combined effect of viscous dissipation and radiation. Results are presented for different values of the viscous dissipation parameter, radiation parameter, radius ratio, aspect ratio and Rayleigh number. It is observed that the viscous dissipation parameter reduces the average Nusselt number at hot surface. However, the average Nusselt number increases at the cold surface due to increased viscous dissipation parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.