Abstract

A considerable part of the excess energy of the electronic subsystem of a solid penetrated by a swift heavy ion (SHI) is accumulated in valence holes. Spatial redistribution of these holes can affect subsequent relaxation, resulting in ionizations of new electrons by hole impacts as well as energy transfer to the target lattice. A new version of the Monte Carlo code TREKIS is applied to study this effect in Al2O3 for SHI tracks. The complex dielectric function (CDF) formalism is used to calculate the cross sections of interaction of involved charged particles (an ion, electrons, holes) with the target giving us ability to take into account collective response of a target to excitations.We compare the radial distributions of the densities and energies of excited electrons and valence holes at different times to those obtained under the assumption of immobile holes used in earlier works. The comparison shows a significant difference between these distributions within the track core, where the majority of slow electrons and valence holes are located at femtosecond timescales after the ion impact. The study demonstrates that the energy deposited by valence holes into the lattice in nanometric tracks is comparable to the energy transferred by excited electrons. Radii of structure transformations in tracks produced by these energy exchange channels are in a good agreement with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.