Abstract

Vacuum furnace brazing is one of the most commonly used joining processes in the aerospace industry, utilized in the manufacturing of the complex components of turbine jet engines, working in both their cold and hot sections. The modern aerospace industry demands continuous improvement of production processes to enhance the engine performance, while ensuring its reliability. Therefore, a better understanding of the processes that shape the properties of engine assemblies joints is crucial. This paper presents an analysis of the influence of key brazing process parameters – brazing time and gap width – on the microstructure and mechanical properties of Inconel 718 superalloy joints obtained with the Palnicro 36M filler alloy. The analysis was conducted basing on results from SEM/EDS analysis and peel, shear and spreadability tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.