Abstract

Ag–ZnO thin films were prepared by a two-step method and then annealed in a vacuum atmosphere at different temperature. It could be seen from the scanning electron microscopy images that the ZnO nanorods collapsed rapidly for the sample annealed at 400 °C (Ag–ZnO-400) and the average diameter of Ag nanoparticles increases with the increasing of annealing temperature. Compared to Ag–ZnO, the Ag–ZnO-400 presents the higher surface plasmon resonance absorbance peak, which was attributed to the increasing of the average diameter of silver nanoparticles. The transient photocurrent curves exhibited that the photocurrent density of Ag–ZnO-400 (~ 0.165 mA/cm−2) was twenty time larger than that of the Ag–ZnO (~ 0.008 mA/cm−2). The photocatalytic degradation efficiency of Ag–ZnO-400 catalysts for the methyl orange in aqueous solutions is over 63%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.