Abstract

The effect of ultrasound on the permeability of blood vessels to nano-emulsion droplets was investigated using excised mouse carotid arteries as model blood vessels. Perfluorocarbon nano-droplets were formed by perfluoro-15-crown-5-ether and stabilized by poly(ethylene oxide)-co-poly(DL-lactide) block co-polymer shells. Nano-droplet fluorescence was imparted by interaction with fluorescein isothiocyanate-dextran (molecular weight = 70,000 Da). The permeability of carotid arteries to nano-droplets was studied in the presence and absence of continuous wave or pulsed therapeutic 1-MHz ultrasound. The data indicated that the application of ultrasound resulted in permeabilization of the vascular wall to nano-droplets. The effect of continuous wave ultrasound was substantially stronger than that of pulsed ultrasound of the same total energy. No effect of blood vessel pre-treatment with ultrasound was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.