Abstract

Effects of element substitutions on thermoelectric properties of Heusler Fe2VAl alloys were evaluated. By W substitution at the V site, the thermal conductivity is reduced effectively because of the enhancement of phonon scattering resulting from the introduction of W atoms, which have much greater atomic mass and volume than the constituent elements of Fe2VAl alloy. W substitution is also effective to obtain a large negative Seebeck coefficient and high electrical conductivity through an electron injection effect. To change the conduction type from n-type to p-type, additional Ti substitution at the V site, which reduces the valence electron density, was examined. A positive Seebeck coefficient as high as that of conventional p-type Fe2VAl alloy was obtained using a sufficient amount of Ti substitution. Electrical resistivity was reduced by the hole doping effect of the Ti substitution while maintaining low thermal conductivity. Compared with the conventional solo-Ti-substituted p-type Fe2VAl alloy, the ZT value was improved, reaching 0.13 at 450 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.