Abstract

The aim of this study is to investigate the effects of three different intensities of infrared diode laser radiation on amino acid neurotransmitters in the cortex and hippocampus of rat brain. Lasers are known to induce different neurological effects such as pain relief, anesthesia, and neurosuppressive effects; however, the precise mechanisms of these effects are not clearly elucidated. Amino acid neurotransmitters (glutamate, aspartate, glutamine, gamma-aminobutyric acid [GABA], glycine, and taurine) play vital roles in the central nervous system (CNS). The shaved scalp of each rat was exposed to different intensities of infrared laser energy (500, 190, and 90 mW) and then the rats were sacrificed after 1 h, 7 d, and 14 d of daily laser irradiation. The control groups were exposed to the same conditions but without exposure to laser. The concentrations of amino acid neurotransmitters were measured by high-performance liquid chromatography (HPLC). The rats subjected to 500 mW of laser irradiation had a significant decrease in glutamate, aspartate, and taurine in the cortex, and a significant decrease in hippocampal GABA. In the cortices of rats exposed to 190 mW of laser irradiation, an increase in aspartate accompanied by a decrease in glutamine were observed. In the hippocampus, other changes were seen. The rats irradiated with 90 mW showed a decrease in cortical glutamate, aspartate, and glutamine, and an increase in glycine, while in the hippocampus an increase in glutamate, aspartate, and GABA were recorded. We conclude that daily laser irradiation at 90 mW produced the most pronounced inhibitory effect in the cortex after 7 d. This finding may explain the reported neurosuppressive effect of infrared laser energy on axonal conduction of hippocampal and cortical tissues of rat brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.