Abstract

Third-order intermodulation (IM3) is a very important issue as a degradation factor of system performance in the range of high input signal power. In this paper, the effect of IM3 from a dual-electrode Mach-Zehnder modulator (DEMZM) and a photodetector (PD) is analyzed for optical single-sideband (OSSB) and optical double-sideband (ODSB) signals incorporating fiber dispersion. In addition, the optimum input signal power and the signal-to-noise-and-distortion ratio (SNDR) for the two cases are also investigated to optimize the performance of the entire system. In the case of OSSB signals, the fundamental components are robust against fiber dispersion, whereas their IM3 components are still sensitive to fiber dispersion. Subsequently, the SNDR for OSSB signals fluctuated to within 6 dB in the relatively high input power range due to fiber dispersion. In the case of ODSB signals, both powers of the fundamental and IM3 components are attenuated. However, the power attenuation of IM3 due to fiber dispersion is significantly faster than that of the fundamental. Thus, the SNDR for ODSB signals is improved as fiber dispersion increases until the power of IM3 is greater than that of the additive noise level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.