Abstract

The noteworthiness of double-diffusive convection with magneto-Jeffrey nanofluid on a peristaltic motion under the effect of MHD and porous medium through a flexible channel with the permeable wall has been theoretically examined. A non-linearized Rosseland approximation is utilized to show the thermal radiation effect. The governing equations are converted to standard non-linear partial differential equations by using suitable non-dimensional parameters. Solutions of emerging equations are obtained by using the multi-step differential transformation method (Ms-DTM). The differential transformation method (DTM) can be applied directly to nonlinear differential equations without requiring linearization and discretization; therefore, it is not affected by errors associated with discretization. The role of influential factors on concentration, temperature, volume fraction, and velocity are determined using graphs. A significant outcome of the present article is that the presence of double-diffusive convection can change the nature of convection in the system. The present results have a wide biological applicability, including for biomicrofluidic devices that regulate the fluid flow through a flexible endoscope and other medical pumping systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.