Abstract

The effects of radiative losses on the thermal behavior of thin metal films, as described by the microscopic two-step hyperbolic heat conduction model, are investigated. Different criteria, which determine the ranges within which thermal radiative losses are significant, are derived. It is found that radiative losses from the electron gas are significant in thin films having ${{C_R \epsilon _e^{{4 \over 3}} T_\infty ^4 } \over {k_e^{{1 \over 3}} L^{{2 \over 3}} G}}\geq 4.6 \times 10^7$ for θo > 4 and τF < 1 and ${{C_R \epsilon _e^{{3 \over 2}} T_\infty ^{{9 \over 2}}} \over {k_e^{{1 \over 2}} L^{{1 \over 2}} G}}\geq 7.4 \times 10^{10}$ for θo 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.