Abstract

The aim of the work was to analyze the preferential solvation process, and determine the composition of the solvation shell of cyclic ethers using the calorimetric method. The heat of solution of 1,4-dioxane, 12-crown-4, 15-crown-5 and 18-crown-6 ethers in the mixture of N-methylformamide with water was measured at four temperatures, 293.15 K, 298.15 K, 303.15 K, and 308.15 K, and the standard partial molar heat capacity of cyclic ethers has been discussed. 18-crown-6 (18C6) molecules can form complexes with NMF molecules through the hydrogen bonds between -CH3 group of NMF and the oxygen atoms of 18C6. Using the model of preferential solvation, the cyclic ethers were observed to be preferentially solvated by NMF molecules. It has been proved that the molar fraction of NMF in the solvation shell of cyclic ethers is higher than that in the mixed solvent. The exothermic, enthalpic effect of preferential solvation of cyclic ethers increases with increasing ring size and temperature. The increase in the negative effect of the structural properties of the mixed solvent with increase in the ring size in the process of preferential solvation of the cyclic ethers indicates an increasing disturbance of the mixed solvent structure, which is reflected in the influence of the energetic properties of the mixed solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.