Abstract

AbstractAmphiphilic graft copolymers consisting of monomeric units of poly(ethylene glycol) monomethyl ether acrylate, lauryl or stearyl methacrylate, and 2‐hydroxyethyl methacrylate were synthesized and characterized. The effectiveness of these poly(ethylene glycol)‐containing graft copolymers in stabilizing styrene emulsion polymerization was evaluated. The polymerization rate (Rp) increases with increasing graft copolymer concentration, initiator concentration, or temperature. At a constant graft copolymer concentration, Rp increases, and the amount of coagulum decreases with the increasing hydrophilicity of graft copolymers. The polymerization system does not follow Smith–Ewart case II kinetics. The desorption of free radicals out of latex particles plays an important role in the polymerization kinetics. The overall activation energy and the activation energy for the radical desorption process are 85.4 and 34.3 kJ/mol, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1608–1624, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.